Paper prepared for the 2021 International Conference on Evolving Cities, University of Southampton, 22 – 24 September 2021.
Anderson, B. (2021). Simulating the consequences of an emissions levy at the city and neighbourhood scale. Paper presented at International Conference on Evolving Cities, Southampton, United Kingdom
Background blurb about emissions, retofit, carbon tax/levy etc
In the reminder of this paper we develop a model of an emissions levy using LSOA level data on emissions derived from the CREDS place-based emissions calculator. We apply carbon ‘values’ to a number of emissions categories to estimate the levy revenue that would be generated for each LSOA in year 1 of such a levy. We then sum these values to given an overall levy revenue estimate for the area in the case study.
We then use estimates of the cost of retrofitting EPC band dwellings D-E and F-G together with estimates of the number of such dwellings in each of the LSOAs to calculate the likely cost of such upgrades in each LSOA and for the whole area in the case study.
We then compare the distributions of the two to understand whether sufficient revenue would be generated within each LSOA or in the case styudy area to enable the per-LSOA or whole case study area costs of the energy efficiency upgrades to be met. In doing so we also analyse the extent to which redistribution of revenue from high emissions areas (households) would be required. It should be noted that this is area level analysis using mean emissions per household. It will not capture within-LSOA hetergeneity in emissions and so will almost certaonly underestimate the range of the household level emissions levy value.
We will use a number of datasets to analyse the patterns of emissions. Some of these are in the repo as they are public access, others are not (or too large).
This analysis is at LSOA level.
Load lSOA look-up table
## Loading LSOA look-up table with useful labels
LSOA - this is all going to be LSOA analysis
## Loading Solent LSOA boundaries from file
## Rows of data: 1136
## Selecting Southampton
## Rows of data: 148
Check with a map…
## Boundary data co-ord system: 27700
Figure 4.1: LSOA check map (shows LSOA, MSOA and ward names when clicked
Labeled as 2019 but actually 2018 data. Source: https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
## Overall IMD decile counts
## [1] 32844
##
## 1 (10% most deprived) 2 3
## 3284 3284 3285
## 4 5 6
## 3284 3285 3284
## 7 8 9
## 3284 3285 3284
## 10 (10% least deprived)
## 3285
## # Southampton IMD decile counts
## [1] 148
##
## 1 (10% most deprived) 2 3
## 19 24 24
## 4 5 6
## 26 15 14
## 7 8 9
## 7 14 4
## 10 (10% least deprived)
## 1
##
## 1 (10% most deprived) 2 3
## 0.128378378 0.162162162 0.162162162
## 4 5 6
## 0.175675676 0.101351351 0.094594595
## 7 8 9
## 0.047297297 0.094594595 0.027027027
## 10 (10% least deprived)
## 0.006756757
##
## 50% least deprived 50% most deprived
## 40 108
##
## 50% least deprived 50% most deprived
## 0.2702703 0.7297297
These are LSOA level deprivation indices. Decile is the English & Welsh decile:
Figure 4.2: LSOA IMD map (shows LSOA, MSOA, ward names and IMD decile when clicked
2019 estimates - do we actually use this data?
Source: https://www.gov.uk/government/statistics/sub-regional-fuel-poverty-data-2021
See https://www.creds.ac.uk/why-we-built-a-place-based-carbon-calculator/
“The highest carbon areas have an average per person footprint more than eight times larger than the lowest carbon areas.”
“We are not effectively targeting decarbonisation policies in high carbon areas. For example, the recently collapsed Green Homes Grants scheme provided a grant to cover 66% of the cost (up to £5,000) of retrofitting homes. For people claiming certain benefits, the cap was raised to 100% and £10,000. But the calculator shows that the big polluters are the large homes in very wealthy areas. In these neighbourhoods, the issue is not affordability but motivation. For high income households, energy costs are a small proportion of their expenditure and so the cost savings for retrofitting their home are inconsequential. As there are no policy “sticks” to incentivise action in the collective interest it is unsurprising that high carbon neighbourhoods have not prioritised decarbonisation.”
Source: https://www.carbon.place/
Notes:
## [1] 32844
Name | credsLsoaDT |
Number of rows | 148 |
Number of columns | 29 |
Key | LSOA11CD |
_______________________ | |
Column type frequency: | |
character | 7 |
factor | 1 |
numeric | 21 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
LAD11NM | 0 | 1 | 11 | 11 | 0 | 1 | 0 |
WD18NM | 0 | 1 | 6 | 13 | 0 | 16 | 0 |
LSOA11CD | 0 | 1 | 9 | 9 | 0 | 148 | 0 |
LSOA11NM | 0 | 1 | 16 | 16 | 0 | 148 | 0 |
WD20CD | 0 | 1 | 9 | 9 | 0 | 16 | 0 |
RUC11 | 0 | 1 | 19 | 19 | 0 | 1 | 0 |
oacSuperGroupName | 0 | 1 | 15 | 35 | 0 | 7 | 0 |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
IMD_Decile_label | 0 | 1 | FALSE | 10 | 4: 26, 2: 24, 3: 24, 1 (: 19 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
CREDStotal_kgco2e | 0 | 1 | 12005970.95 | 3950315.01 | 5330300.00 | 8440200.00 | 12166000.00 | 14846325.00 | 22704000.00 | ▇▆▇▃▁ |
CREDSgas_kgco2e2018 | 0 | 1 | 1234937.68 | 382064.37 | 10767.20 | 1017372.50 | 1233750.00 | 1459772.50 | 2586400.00 | ▁▃▇▂▁ |
CREDSelec_kgco2e2018 | 0 | 1 | 735265.41 | 195095.99 | 418140.00 | 614700.00 | 694160.00 | 825945.00 | 1740510.00 | ▇▇▁▁▁ |
CREDSotherEnergy_kgco2e2011 | 0 | 1 | 90723.71 | 153254.16 | 0.00 | 27785.00 | 47460.50 | 80246.00 | 1279200.00 | ▇▁▁▁▁ |
CREDSallHomeEnergy_kgco2e2011 | 0 | 1 | 2151650.51 | 473661.33 | 1185534.00 | 1866010.00 | 2114738.00 | 2380087.50 | 4765800.00 | ▅▇▂▁▁ |
CREDScar_kgco2e2018 | 0 | 1 | 1310046.55 | 355771.51 | 333540.00 | 1094005.00 | 1357330.00 | 1542900.00 | 2099440.00 | ▁▅▇▇▂ |
CREDSvan_kgco2e2018 | 0 | 1 | 199990.55 | 291846.23 | 11328.00 | 94336.75 | 140101.00 | 197145.00 | 2807200.00 | ▇▁▁▁▁ |
pop_2018 | 0 | 1 | 1707.84 | 412.64 | 1080.00 | 1460.00 | 1620.00 | 1762.50 | 3900.00 | ▇▅▁▁▁ |
energy_pc | 0 | 1 | 18.47 | 5.29 | 9.50 | 14.69 | 17.28 | 21.88 | 44.48 | ▇▇▂▁▁ |
pc_Heating_Electric | 0 | 1 | 18.63 | 13.32 | 2.49 | 8.75 | 15.44 | 24.71 | 85.27 | ▇▅▁▁▁ |
epc_total | 0 | 1 | 466.49 | 184.08 | 211.00 | 341.75 | 409.00 | 548.25 | 1140.00 | ▇▆▂▁▁ |
epc_newbuild | 0 | 1 | 82.12 | 101.68 | 11.00 | 33.00 | 52.00 | 83.25 | 798.00 | ▇▁▁▁▁ |
epc_A | 0 | 1 | 0.55 | 2.10 | 0.00 | 0.00 | 0.00 | 0.00 | 13.00 | ▇▁▁▁▁ |
epc_B | 0 | 1 | 57.51 | 85.92 | 0.00 | 9.75 | 27.50 | 69.25 | 606.00 | ▇▁▁▁▁ |
epc_C | 0 | 1 | 147.58 | 86.28 | 39.00 | 87.00 | 122.50 | 184.25 | 492.00 | ▇▅▁▁▁ |
epc_D | 0 | 1 | 172.40 | 41.86 | 37.00 | 144.25 | 168.50 | 197.00 | 322.00 | ▁▅▇▂▁ |
epc_E | 0 | 1 | 64.81 | 27.76 | 17.00 | 45.00 | 62.50 | 76.25 | 220.00 | ▇▇▂▁▁ |
epc_F | 0 | 1 | 18.67 | 20.27 | 1.00 | 7.00 | 12.50 | 22.00 | 150.00 | ▇▁▁▁▁ |
epc_G | 0 | 1 | 4.99 | 9.73 | 0.00 | 1.00 | 2.50 | 5.00 | 96.00 | ▇▁▁▁▁ |
IMD_Decile | 0 | 1 | 4.11 | 2.31 | 1.00 | 2.00 | 4.00 | 6.00 | 10.00 | ▇▇▅▃▁ |
IMDScore | 0 | 1 | 27.26 | 13.62 | 5.75 | 16.53 | 25.09 | 36.08 | 67.17 | ▆▇▅▂▁ |
##
## Southampton
## 148
Now we need to convert the per capita to totals and then use the number of electricity meters as a proxy for the number of dwellings
Ideally we’d have Census 2021 data but we don’t have it yet. So instead we’ll use the number of electricity meters for 2018 which aligns with the CREDS data (might be an over-estimate if a dwelling has 2…)
First check the n electricity meters logic…
## LSOAs (check):
## [1] 148
Check that the number of electricity meters reasonably correlates with the number of EPCs from the CREDS data. We would not expect the number of gas meters to correlate due to non-gas dwellings etc.
That assumption seems sensible…
We want to present the analysis in ‘per dwelling’ or ‘per household’ terms so we need to convert the total kg CO2e values to per dwelling values by dividing by the number of electricity meters.
## # Summary of per dwelling values
Name | …[] |
Number of rows | 148 |
Number of columns | 9 |
Key | NULL |
_______________________ | |
Column type frequency: | |
numeric | 9 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
CREDStotal_kgco2e_pdw | 0 | 1 | 17126.66 | 7014.73 | 5845.64 | 11905.74 | 15464.94 | 21050.67 | 44958.42 | ▆▇▃▁▁ |
CREDSgas_kgco2e2018_pdw | 0 | 1 | 1758.06 | 626.82 | 12.82 | 1358.01 | 1727.03 | 2166.35 | 3659.41 | ▁▅▇▃▁ |
CREDSelec_kgco2e2018_pdw | 0 | 1 | 1004.41 | 109.16 | 655.50 | 938.64 | 988.98 | 1044.12 | 1459.95 | ▁▆▇▂▁ |
CREDSmeasuredHomeEnergy_kgco2e2018_pdw | 0 | 1 | 2762.47 | 641.02 | 1123.58 | 2322.68 | 2744.44 | 3169.45 | 4876.37 | ▁▆▇▂▁ |
CREDSotherEnergy_kgco2e2011_pdw | 0 | 1 | 117.63 | 166.94 | 0.00 | 40.87 | 64.42 | 112.06 | 1151.73 | ▇▁▁▁▁ |
CREDSallHomeEnergy_kgco2e2018_pdw | 0 | 1 | 2880.09 | 584.12 | 1506.15 | 2476.45 | 2813.93 | 3235.29 | 5031.52 | ▂▇▅▂▁ |
CREDScar_kgco2e2018_pdw | 0 | 1 | 1848.64 | 566.47 | 613.65 | 1413.59 | 1851.17 | 2258.37 | 3546.98 | ▃▆▇▃▁ |
CREDSvan_kgco2e2018_pdw | 0 | 1 | 266.07 | 335.98 | 22.61 | 130.24 | 194.83 | 265.58 | 2801.60 | ▇▁▁▁▁ |
CREDSpersonalTransport_kgco2e2018_pdw | 0 | 1 | 2114.71 | 684.48 | 760.81 | 1607.59 | 2131.50 | 2558.57 | 4223.23 | ▅▇▇▂▁ |
Examine patterns of per dwelling emissions for sense.
Figure 4.3 shows the LSOA level per dwelling ‘all emissions’ in Tonnes CO2e as estimated by the CREDS tool against the Index of Multiple Deprivation (IMD) score and uses the size of the points to represent the % of dwellings with electric heating. Colour is used to represent the IMD decile where decile 1 is the 10% least deprived.
## Per dwelling T CO2e - all emissions
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.3: Scatter of LSOA level all per dwelling emissions against IMD score
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Correlation test (pwcorr)
##
## Pearson's product-moment correlation
##
## data: credsLsoaDT$IMDScore and credsLsoaDT$CREDStotal_kgco2e_pdw
## t = -9.9011, df = 146, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7213850 -0.5262861
## sample estimates:
## cor
## -0.6338111
## LSOA11CD WD18NM All_Tco2e_per_dw
## Length:148 Length:148 Min. : 5.846
## Class :character Class :character 1st Qu.:11.906
## Mode :character Mode :character Median :15.465
## Mean :17.127
## 3rd Qu.:21.051
## Max. :44.958
## LSOA11CD WD18NM All_Tco2e_per_dw
## 1: E01017249 Shirley 44.95842
## 2: E01017148 Bassett 43.54419
## 3: E01017197 Freemantle 41.42910
## 4: E01017224 Peartree 31.22609
## 5: E01017180 Coxford 30.70376
## 6: E01017214 Millbrook 30.16370
## LSOA11CD WD18NM All_Tco2e_per_dw
## 1: E01017245 Redbridge 7.967564
## 2: E01017241 Redbridge 7.871967
## 3: E01032738 Bevois 7.870684
## 4: E01017182 Coxford 7.344557
## 5: E01017139 Bargate 7.015385
## 6: E01017140 Bargate 5.845638
Figure 4.4: Annual mean T CO2e per dwelling for all SouthamptonLSOAs
Figure 4.5 uses the same plotting method to show emissions per dwelling due to gas use. This preserves the negative correlation shown in the previou splot for ‘all emissions’ but with some variation, notably for LSOAs which have a higher % ofelectric heating.
## Per dwelling T CO2e - gas emissions
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.82 1358.01 1727.03 1758.06 2166.35 3659.41
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.5: Scatter of LSOA level gas per dwelling emissions against IMD score
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Correlation test (pwcorr)
##
## Pearson's product-moment correlation
##
## data: credsLsoaDT$IMDScore and credsLsoaDT$CREDSgas_kgco2e2018_pdw
## t = -7.7513, df = 146, p-value = 1.421e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6450947 -0.4147371
## sample estimates:
## cor
## -0.53995
Figure 4.6 uses the same plotting method to show emissions per dwelling due to electricity use. This is mnuch more random… although note the LSOAs with higher % electric heating.
## Per dwelling T CO2e - elec emissions
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.6: Scatter of LSOA level elec per dwelling emissions against IMD score - who emits?
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Correlation test (pwcorr)
##
## Pearson's product-moment correlation
##
## data: credsLsoaDT$IMDScore and credsLsoaDT$CREDSelec_kgco2e2018_pdw
## t = -2.1523, df = 146, p-value = 0.03301
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.32744768 -0.01443342
## sample estimates:
## cor
## -0.1753689
Figure 4.7 uses the same plotting method to show emissions per dwelling due to other energy use. This should be higher for off-gas areas which tend to be rural areas so we also present analysis by the LSOA’s urban/rural classification.
## Per dwelling T CO2e - elec emissions
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.7: Scatter of LSOA level other energy per dwelling emissions against IMD score - who emits?
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Correlation test (pwcorr)
##
## Pearson's product-moment correlation
##
## data: credsLsoaDT$IMDScore and credsLsoaDT$CREDSelec_kgco2e2018_pdw
## t = -2.1523, df = 146, p-value = 0.03301
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.32744768 -0.01443342
## sample estimates:
## cor
## -0.1753689
## RUC11 mean_gas_kgco2e mean_elec_kgco2e
## 1: Urban city and town 1758.058 1004.407
## mean_other_energy_kgco2e
## 1: 117.6261
Check whether all measured energy emissions combined (gas & electricity) correlate with all emissions (in this data).
##
## Pearson's product-moment correlation
##
## data: credsLsoaDT$CREDStotal_kgco2e_pdw and credsLsoaDT$CREDSmeasuredHomeEnergy_kgco2e2018_pdw
## t = 17.213, df = 146, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7571077 0.8655189
## sample estimates:
## cor
## 0.8184714
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Strong correlkation. So in theory we could (currently) use measured energy emissions as a proxy for total emissions.
Repeat for all home energy - includes estimates of emissions from oil etc
##
## Pearson's product-moment correlation
##
## data: credsLsoaDT$CREDStotal_kgco2e_pdw and credsLsoaDT$CREDSallHomeEnergy_kgco2e2018_pdw
## t = 16.017, df = 146, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7311467 0.8501570
## sample estimates:
## cor
## 0.7983163
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Slightly weaker correlation…
We don’t expect to use this data as it is already taxed in a way that relates to emissions (?)
Figure 4.8 uses the same plotting method to show emissions per dwelling due to van use. Again, we present analysis by the LSOA’s urban/rural classification.
## Per dwelling T CO2e - car emissions
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.8: Scatter of LSOA level car use per dwelling emissions against IMD score
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Correlation with IMD score (pwcorr)
##
## Pearson's product-moment correlation
##
## data: credsLsoaDT$IMDScore and credsLsoaDT$CREDScar_kgco2e2018_pdw
## t = -5.833, df = 146, p-value = 3.37e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5570107 -0.2940157
## sample estimates:
## cor
## -0.4347367
## RUC11 mean_car_kgco2e mean_van_kgco2e
## 1: Urban city and town 1848.645 266.0683
Figure 4.9 uses the same plotting method to show emissions per dwelling due to van use.
## Per dwelling T CO2e - van emissions
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.9: Scatter of LSOA level van use per dwelling emissions against IMD score
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Correlation with IMD score (pwcorr)
##
## Pearson's product-moment correlation
##
## data: credsLsoaDT$IMDScore and credsLsoaDT$CREDSvan_kgco2e2018_pdw
## t = 0.59071, df = 146, p-value = 0.5556
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1134079 0.2085304
## sample estimates:
## cor
## 0.04882944
In order to estimate the LSOA level retrofit costs, we need to impute the EPC counts in each LSOA. We do this using the number of electricity meters as the presumed number of dwellings and the observed % of EPCs in each band for all dwellings with EPCs which is provided by the CREDS data. This assumes that if we had EPCs for all dwellings then the % in each band in each LSOA would stay the same. This is quite a bold assumption…
Note that the EPC database is continuously updated so more recent upgrades will not be captured in the data used for this analysis. This means the total retrofit costs are likely to be an over-estimate. The extent of this over-estimate would require the use of an updated (current) EPC data extract and is left for future work.
## N EPCs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 211.0 341.8 409.0 466.5 548.2 1140.0
## N elec meters
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 430.0 631.5 695.5 733.8 800.8 1392.0
Correlation between high % EPC F/G or A/B and deprivation?
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Now we need to convert the % to dwellings using the number of electricity meters (see above).
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Case studies:
BEIS/ETC Carbon ‘price’
EU carbon ‘price’
Scenario 1: apply the central value Scenario 2: apply the low/central/high as a rising block tariff for each emissions source. Set threhsolds to 33% and 66% (in absence of any other guidance!)
The table below shows the overall £ GBP total for the case study area in £M.
## beis_GBPtotal_c beis_total_c_gas beis_GBPtotal_c_elec
## 1: 435.34 44.78 26.66
The table below shows the mean per dwelling value rounded to the nearest £10.
## beis_GBPtotal_c_perdw beis_GBPtotal_c_gas_perdw beis_GBPtotal_c_elec_perdw
## 1: 4200 430 250
## beis_GBPtotal_c_energy_perdw
## 1: 680
Figure ?? shows the total £k per LSOA and £ per dwelling revenue using BEIS central carbon price plotted against IMD score. The tables show the LSOAs with the highest and lowest values.
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.10: £k per LSOA revenue using BEIS central carbon price
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.11: £k per LSOA revenue using BEIS central carbon price
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1432 2917 3789 4196 5157 11015
## LSOA11CD WD18NM CREDStotal_kgco2e_pdw beis_GBPtotal_c_perdw
## 1: E01017249 Shirley 44958.42 11014.812
## 2: E01017148 Bassett 43544.19 10668.326
## 3: E01017197 Freemantle 41429.10 10150.129
## 4: E01017224 Peartree 31226.09 7650.391
## 5: E01017180 Coxford 30703.76 7522.422
## 6: E01017214 Millbrook 30163.70 7390.107
## LSOA11CD WD18NM CREDStotal_kgco2e_pdw beis_GBPtotal_c_perdw
## 1: E01017245 Redbridge 7967.564 1952.053
## 2: E01017241 Redbridge 7871.967 1928.632
## 3: E01032738 Bevois 7870.684 1928.318
## 4: E01017182 Coxford 7344.557 1799.416
## 5: E01017139 Bargate 7015.385 1718.769
## 6: E01017140 Bargate 5845.638 1432.181
Figure ?? repeats the analysis but just for gas.
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.12: £k per LSOA incurred via gas using BEIS central carbon price
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.13: £k per LSOA incurred via gas using BEIS central carbon price
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.14 332.71 423.12 430.72 530.76 896.55
## LSOA11CD WD18NM gasTCO2e_pdw beis_GBPtotal_c_gas_perdw
## 1: E01017249 Shirley 3.659406 896.5545
## 2: E01017148 Bassett 3.633488 890.2047
## 3: E01017197 Freemantle 2.998158 734.5488
## 4: E01032753 Portswood 2.945786 721.7175
## 5: E01017252 Shirley 2.924247 716.4405
## 6: E01017145 Bassett 2.903698 711.4061
## LSOA11CD WD18NM gasTCO2e_pdw beis_GBPtotal_c_gas_perdw
## 1: E01017142 Bargate 0.6995069 171.379188
## 2: E01032748 Bargate 0.6532194 160.038752
## 3: E01017140 Bargate 0.5874720 143.930649
## 4: E01017281 Woolston 0.3330864 81.606173
## 5: E01032755 Bargate 0.2409302 59.027907
## 6: E01032746 Bargate 0.0128181 3.140433
Figure ?? repeats the analysis for electricity.
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.14: £k per LSOA incurred via electricity using BEIS central carbon price
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.15: £k per LSOA incurred via electricity using BEIS central carbon price
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 160.6 230.0 242.3 246.1 255.8 357.7
## LSOA11CD WD18NM elecTCO2e_pdw beis_GBPtotal_c_elec_perdw
## 1: E01032746 Bargate 1.459952 357.6883
## 2: E01017202 Harefield 1.299459 318.3676
## 3: E01017270 Swaythling 1.284754 314.7646
## 4: E01017170 Bitterne 1.265758 310.1107
## 5: E01032748 Bargate 1.265183 309.9698
## 6: E01017142 Bargate 1.262154 309.2277
## LSOA11CD WD18NM elecTCO2e_pdw beis_GBPtotal_c_elec_perdw
## 1: E01017138 Bargate 0.8657028 212.0972
## 2: E01017160 Bevois 0.8092219 198.2594
## 3: E01017281 Woolston 0.7904938 193.6710
## 4: E01017250 Shirley 0.7889987 193.3047
## 5: E01017196 Freemantle 0.7812467 191.4054
## 6: E01017278 Woolston 0.6554957 160.5964
Figure ?? shows the same analysis for measured energy (elec + gas)
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.16: £k per LSOA incurred via electricity and gas using BEIS central carbon price
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Figure 4.17: £k per LSOA incurred via electricity and gas using BEIS central carbon price
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 275.3 569.1 672.4 676.8 776.5 1194.7
Applied at to per dwelling values (not LSOA total)
Cut at 25%, 50% - so any emissions over 50% get high carbon cost
## Cuts for total per dw
## 0% 25% 50% 75% 100%
## 5845.638 11905.745 15464.936 21050.667 44958.416
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## V1 beis_GBPtotal_sc2_l_perdw beis_GBPtotal_sc2_c_perdw
## 1: 14.056160 1452.5009 526.8518
## 2: 18.324152 1452.5009 872.0019
## 3: 9.203213 1122.7920 0.0000
## 4: 7.015385 855.8769 0.0000
## 5: 5.845638 713.1678 0.0000
## 6: 14.007034 1452.5009 514.8159
## 7: 26.572009 1452.5009 872.0019
## 8: 25.334282 1452.5009 872.0019
## 9: 21.013503 1452.5009 872.0019
## 10: 25.055866 1452.5009 872.0019
## beis_GBPtotal_sc2_h_perdw beis_GBPtotal_sc2_perdw
## 1: 0.000 1979.3527
## 2: 1049.332 3373.8348
## 3: 0.000 1122.7920
## 4: 0.000 855.8769
## 5: 0.000 713.1678
## 6: 0.000 1967.3167
## 7: 4076.296 6400.7985
## 8: 3622.050 5946.5525
## 9: 2036.324 4360.8268
## 10: 3519.871 5844.3740
Name | …[] |
Number of rows | 148 |
Number of columns | 3 |
Key | NULL |
_______________________ | |
Column type frequency: | |
numeric | 3 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
V1 | 0 | 1 | 17.13 | 7.01 | 5.85 | 11.91 | 15.46 | 21.05 | 44.96 | ▆▇▃▁▁ |
beis_GBPtotal_sc2_perdw | 0 | 1 | 3221.47 | 2302.13 | 713.17 | 1452.80 | 2329.22 | 4374.47 | 13148.61 | ▇▃▂▁▁ |
beis_GBPtotal_sc2 | 0 | 1 | 2184016.07 | 1266099.70 | 650296.60 | 1113364.33 | 1881431.98 | 2831522.94 | 6640047.94 | ▇▅▂▁▁ |
## nLSOAs sum_total_sc1 sum_total_sc2
## 1: 148 435.3365 323.2344
## Saving 7 x 5 in image
## Saving 7 x 5 in image
## CREDSgas_kgco2e2018_pdw beis_GBPgas_sc2_l_perdw
## 1: 1900.7450 165.67756
## 2: 2388.2635 165.67756
## 3: 1032.2892 125.93928
## 4: 870.0000 106.14000
## 5: 587.4720 71.67159
## 6: 699.5069 85.33984
## CREDSgas_kgco2e2018_pdw beis_GBPgas_sc2_l_perdw beis_GBPgas_sc2_c_perdw
## 1: 1900.7450 165.67756 90.40898
## 2: 2388.2635 165.67756 90.40898
## 3: 1032.2892 125.93928 0.00000
## 4: 870.0000 106.14000 0.00000
## 5: 587.4720 71.67159 0.00000
## 6: 699.5069 85.33984 0.00000
## beis_GBPgas_sc2_h_perdw beis_GBPgas_sc2_perdw
## 1: 63.75374 319.84029
## 2: 242.67303 498.75957
## 3: 0.00000 125.93928
## 4: 0.00000 106.14000
## 5: 0.00000 71.67159
## 6: 0.00000 85.33984
## [1] 31.10013
## Saving 7 x 5 in image
## [1] 16.02575
## Saving 7 x 5 in image
## nLSOAs sumAllConsEmissions_GBP sumGasEmissions_GBP sumElecEmissions_GBP
## 1: 148 323.2344 31.10013 16.02575
Excludes EPC A, B & C (assumes no need to upgrade)
## To retrofit D-E (£m)
## [1] 761.6416
## Number of dwellings: 57266
## To retrofit F-G (£m)
## [1] 146.4769
## Number of dwellings: 5466
## To retrofit D-G (£m)
## [1] 908.1185
## To retrofit D-G (mean per dwelling £k)
## [1] 14.41774
## meanRetrofitPerLSOA totalRetrofit
## 1: 6135.936 908118528
Plot retrofit costs
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Map retrofit costs
Figure 4.18: LSOA retrofit costs (upgrade EPC C to F)
## LSOA11CD WD18NM epc_pc_A_C retrofitSum
## 1: E01032746 Bargate 83.07087 1906205
## 2: E01032745 Bargate 85.42274 2083370
## 3: E01017264 Swaythling 62.43243 2825518
## 4: E01032748 Bargate 81.94690 3111156
## 5: E01032751 Bargate 72.26776 3461155
## 6: E01017262 Sholing 52.91829 3569217
## LSOA11CD WD18NM epc_pc_A_C retrofitSum
## 1: E01017154 Bevois 25.51020 14171398
## 2: E01017202 Harefield 20.62615 11080907
## 3: E01017192 Freemantle 25.22523 10179160
## 4: E01017185 Coxford 20.97130 9724814
## 5: E01017260 Sholing 14.62766 9723096
## 6: E01032753 Portswood 25.93284 9423102
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Repeat per dwelling
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
Repeat per dwelling
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.301 2.707 3.745 4.032 4.977 10.307
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.69 18.00 21.43 22.74 25.60 57.64
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## Saving 7 x 5 in image
## LSOA11CD WD18NM retrofitSum epc_D_pc epc_E_pc epc_F_pc epc_G_pc
## 1: E01017154 Bevois 14171398 0.1505102 0.2806122 0.19132653 0.122448980
## 2: E01017158 Bevois 6302740 0.3222506 0.1202046 0.01662404 0.002557545
## 3: E01017160 Bevois 5743744 0.4450172 0.1391753 0.01374570 0.005154639
## Saving 7 x 5 in image
## Saving 7 x 5 in image
What happens in Year 2 totally depends on the rate of upgrades…
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.090 3.216 6.080 6.824 9.741 20.699
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.69 18.00 21.43 22.74 25.60 57.64
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Saving 7 x 5 in image
## Saving 7 x 5 in image
## LSOA11CD WD18NM retrofitSum epc_D_pc epc_E_pc epc_F_pc epc_G_pc
## 1: E01017154 Bevois 14171398 0.1505102 0.2806122 0.19132653 0.122448980
## 2: E01017158 Bevois 6302740 0.3222506 0.1202046 0.01662404 0.002557545
## 3: E01017160 Bevois 5743744 0.4450172 0.1391753 0.01374570 0.005154639
## Saving 7 x 5 in image
## Saving 7 x 5 in image
What happens in Year 2 totally depends on the rate of upgrades…
## Saving 7 x 5 in image
I don’t know if this will work…
## Doesn't